Exercise 1 (6 points)

a) This is wrong. Let $A=k[T] /\left(T^{p}\right)$ and $Y=\operatorname{Spec} A$. Then Y is an objet of the flat site of $\operatorname{Spec} k$, but $\mu_{p}(Y)$ is not trivial, e.g. $T+1$ is a non-trivial element of $\mu_{p}(Y)$ (1 point).
b) This is true. Set $X_{\mathbf{C}}=X \times_{\mathbf{R}} \mathbf{C}$ and $\Gamma=\operatorname{Gal}(\mathbf{C} / \mathbf{R})$. By Theorem 5.17, the groups $H^{s}\left(X_{\mathbf{C}}, \mu_{n}\right)$ are finite for all $s \geq 0$. Now Hochschild-Serre spectral sequence yields the result (see also Remark 5.10), given that $H^{r}(\Gamma, M)$ is finite for every finite Γ-module M and all $r \geq 0$ (2 points).
c) This is true. Write $a_{i}=b_{i}^{2}$ for some $b_{i} \in \mathbf{C}$ and set $y_{i}=a_{i} x_{i}$. Then X (which is obviously smooth) is isomorphic to the projective variety

$$
Y: y_{1}^{2}+y_{2}^{2}+\ldots+y_{n}^{2}=0 .
$$

Set $z_{1}=y_{1}+i y_{2}$ and $z_{2}=y_{1}-i y_{2}$, we obtain that Y is isomorphic to the variety

$$
Z: z_{1} z_{2}=-\left(y_{3}^{2}+\ldots+y_{n}^{2}\right)
$$

and the latter is obviously birational to the projective space because its equation can be rewritten

$$
z_{1}=-\frac{y_{3}^{2}+\ldots+y_{n}^{2}}{z_{2}} .
$$

Now apply Corollary 6.18 (2 points).
d) This is wrong. Take $G=\mathbf{G}_{m}$, then $H^{1}\left(K, G_{K}\right)=0$ by Hilbert 90 , but $H^{1}(X, G)=\operatorname{Pic} X$ can be non zero, for example for an elliptic curve over an algebraically closed field or the spectrum of a Dedekind ring which is not a UFD (1 point).

Exercise 2 (5 points)

1. a) Let $\mathrm{f}: j^{*} j_{*} \mathcal{F} \simeq \mathcal{F}$ be the natural adjunction map. It is sufficient to show that it is an isomorphism on the geometric stalks. Let \bar{x} be a geometric point of $U \subset X$ with image x. By Proposition 2.38, we have

$$
\left(j^{*} j_{*} \mathcal{F}\right)_{\bar{x}}=\left(j_{*} \mathcal{F}\right)_{\bar{x}}=\mathcal{F}_{\bar{x}},
$$

the latter equality coming the fact that $x \in U$ (1.5 point).
b) Apply Lemma 2.44 to the sheaf $j_{*} \mathcal{F}$, and replace $j^{*} j_{*} \mathcal{F}$ by \mathcal{F} thanks to a) (1 point).
2. a) The long exact sequence of cohomology associated to (1) gives an exact sequence

$$
0 \rightarrow H^{0}\left(X, j_{!} \mathcal{F}\right) \rightarrow H^{0}\left(X, j_{*} \mathcal{F}\right) \rightarrow H^{0}\left(X, i_{*} i^{*} j_{*} \mathcal{F}\right)
$$

whence the result with the second assumption (1 point).
b) The same long exact sequence

$$
H^{0}\left(X, i_{*} i^{*} j_{*} \mathcal{F}\right) \rightarrow H^{1}\left(X, j_{!} \mathcal{F}\right) \rightarrow H^{1}\left(X, j_{*} \mathcal{F}\right) \rightarrow H^{1}\left(X, i_{*} i^{*} j_{*} \mathcal{F}\right) \rightarrow H^{2}(X, j!\mathcal{F}) \ldots
$$

shows that it is sufficient to show that $H^{r}\left(X, j_{*} \mathcal{F}\right)$ and $H^{r}\left(X, i_{*} i^{*} j_{*} \mathcal{F}\right)$ are both zero for $r \geq 1$. We know that j_{*} takes injectives to injectives (since it has an exact left adjoint j^{*} and the same holds for $i^{*} j_{*}$ (by the first assumption) and for i_{*} (for the same reason). Whence the result (1.5 point).

Exercise 3 (6 points)

1. This is just the exact sequence of the first terms of Hochschild-Serre spectral sequence

$$
H^{r}\left(k, H^{s}\left(\bar{X}, \mathbf{G}_{m}\right)\right) \Rightarrow H^{r+s}\left(X, \mathbf{G}_{m}\right)
$$

(1 point).
2. a) A rational point $x \in X(k)$ induces a Galois-equivariant retraction $\bar{k}[X]^{*} \rightarrow \bar{k}^{*}, f \mapsto f(x)$ of the inclusion $\bar{k}^{*} \rightarrow \bar{k}[X]^{*}$. This implies that the natural map $\operatorname{Br} k=H^{2}\left(k, \bar{k}^{*}\right) \rightarrow H^{2}\left(k, \bar{k}[X]^{*}\right)$ has a retraction, hence it is injective (1.5 point).
b) The exact sequence

$$
0 \rightarrow \bar{k}^{*} \rightarrow \bar{k}[X]^{*} \rightarrow U(X) \rightarrow 0
$$

induces an exact sequence

$$
0 \rightarrow H^{1}\left(k, \bar{k}^{*}\right) \rightarrow H^{1}\left(k, \bar{k}[X]^{*}\right) \rightarrow H^{1}(k, U(X)) \rightarrow \operatorname{Br} k \rightarrow H^{2}\left(k, \bar{k}[X]^{*}\right) .
$$

Now apply a) and Hilbert 90 (1.5 points).
3. Using 1. and the assumption, we get an isomorphism $H^{2}\left(k, \bar{k}[X]^{*}\right) \rightarrow$ $\mathrm{Br}_{1} X$. By 2., there is an exact sequence

$$
0 \rightarrow \operatorname{Br} k \rightarrow H^{2}\left(k, \bar{k}[X]^{*}\right) \rightarrow H^{2}(k, U(X)) \rightarrow H^{3}\left(k, \bar{k}^{*}\right) \rightarrow H^{3}\left(k, \bar{k}[X]^{*}\right) .
$$

But the map $H^{3}\left(k, \bar{k}^{*}\right) \rightarrow H^{3}\left(k, \bar{k}[X]^{*}\right)$ is injective (same argument as in question 2.a), whence

$$
\operatorname{Br}_{1} X / \operatorname{Br} k \simeq H^{2}\left(k, \bar{k}[X]^{*}\right) / \operatorname{Br} k \simeq H^{2}(k, U(X))
$$

(2 points).

Exercise 4 (4 points)

a) The adjunction map $G \rightarrow j_{*} j^{*} G$ and the canonical map $j^{*} G \rightarrow G_{K}$ (cf. Example 2.37) induce a map $G \rightarrow j_{*} G_{K}$. Let us show that it induces an isomorphism on every geometric stalk $\bar{x} \rightarrow Y$ with image x. This is obvious if x is the generic point of Y. If x is the closed point, the respective stalks are $G\left(A^{\text {sh }}\right)$ and $G\left(\operatorname{Frac} A^{\text {sh }}\right)$, which are the same because G is proper over A (1.5 point).
b) This follows from a) and the first two terms of the exact sequence associated to Leray spectral sequence (1 point).
c) A class in the kernel corresponds to a Y-torsor Z under G such that the generic fibre of Z has a K-point. But Z is proper over Y (as G is proper over Y and Z becomes isomorphic to G after base change by a fppf covering), hence Z has an A-point by the valuative criterion of properness, which means that its class in $H^{1}(Y, G)$ is trivial (1.5 point).

Remark: The assumptions of Exercise 2, question 2., are actually satisfied if $X=\operatorname{Spec} A$ is the spectrum of a henselian discrete valuation ring with fraction field K and perfect residue field k and we take for $i:\{x\} \rightarrow X$ the inclusion of the closed point of X (resp. for $j:\{u\} \rightarrow X$ the inclusion of the generic point of X). See Milne, Arithmetic duality theorems, Prop 2.1.1.

